Numerical radius inequalities for tensor product of operators

نویسندگان

چکیده

The two well-known numerical radius inequalities for the tensor product $$A \otimes B$$ acting on $${\mathbb {H}} {\mathbb {K}}$$ , where A and B are bounded linear operators defined complex Hilbert spaces $$ {K}},$$ respectively \frac{1}{2} \Vert A\Vert B\Vert \le w(A B) w(A)w(B) \min \{ w(A) w(B) \}. In this article, we develop new lower upper bounds $$w(A B)$$ of study equality conditions those bounds.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Norm and Numerical Radius Inequalities for a Product of Two Linear Operators in Hilbert Spaces

The main aim of the present paper is to establish some norm and numerical radius inequalities for the composite operator BA under suitable assumptions for the transform Cα,β (T ) := (T ∗ −αI) (β I−T ) , where α ,β ∈ C and T ∈ B(H), of the operators involved. Mathematics subject classification (2000): Primary 47A12, 47A30; Secondary 47A63..

متن کامل

extend numerical radius for adjointable operators on Hilbert C^* -modules

In this paper, a new definition of numerical radius for adjointable operators in Hilbert -module space will be introduced. We also give a new proof of numerical radius inequalities for Hilbert space operators.

متن کامل

Some improvements of numerical radius inequalities via Specht’s ratio

We obtain some inequalities related to the powers of numerical radius inequalities of Hilbert space operators. Some results that employ the Hermite-Hadamard inequality for vectors in normed linear spaces are also obtained. We improve and generalize some inequalities with respect to Specht's ratio. Among them, we show that, if $A, Bin mathcal{B(mathcal{H})}$ satisfy in some conditions, it follow...

متن کامل

New Reverse Inequalities for the Numerical Radius of Normal Operators in Hilbert Spaces

Let (H ; 〈·, ·〉) be a complex Hilbert space and T : H → H a bounded linear operator on H. Recall that T is a normal operator if T T = TT . Normal operator T may be regarded as a generalisation of self-adjoint operator T in which T ∗ need not be exactly T but commutes with T [5, p. 15]. An equivalent condition with normality that will be extensively used in the following is that ‖Tx‖ = ‖T ∗x‖ fo...

متن کامل

Inequalities for the Norm and Numerical Radius of Composite Operators in Hilbert Spaces

Some new inequalities for the norm and the numerical radius of composite operators generated by a pair of operators are given.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings - Mathematical Sciences

سال: 2023

ISSN: ['0973-7685', '0253-4142']

DOI: https://doi.org/10.1007/s12044-022-00722-2